
. Electron-phonon coupling using Quantum Espresso

Tutorial Tue.5

Hands-on session

Hands-on based on Quantum Espresso 6.2.2

Exercise 1

In this example we are going to calculate the electron-phonon coefficient of metallic fcc Pb1 and
interpolate the results using linear interpolation and a double grid technique. We will also study the
phonon linewidths and critical superconducting temperature.
First copy the tutorial files and go in the first exercise:

$ wget http://epw.org.uk/uploads/School2018/Tue.5.Ponce.tar

$ tar -xvf Tue.5.Ponce.tar ; cd tuto_Tues5/exercise1

IMake a self-consistent calculation for Pb using a dense grid of k-points. The dense grid must
contain all k and k+q grid points used in the subsequent electron-phonon calculation and must be
dense enough to produce accurate electron-phonon coefficients.
Note: you have to use unshifted grids (k1=k2=k3=0) only, that include the Γ point. This example uses a 18x18x18

k-point grid that is not dense enough for real calculations.

&control pb.scf.fit.in

calculation='scf'

restart_mode='from_scratch',

prefix='lead',

pseudo_dir = './',

outdir='./'

/

&system

ibrav= 2,

celldm(1) = 9.2225583816,

nat= 1,

ntyp= 1,

ecutwfc = 30.0

occupations='smearing',

smearing='marzari-vanderbilt',

degauss=0.05,

la2F = .true.,

/

&electrons

conv_thr = 1.0d-10

mixing_beta = 0.7

/

ATOMIC_SPECIES

Pb 207.2 pb_s.UPF

ATOMIC_POSITIONS

Pb 0.00 0.00 0.00

K_POINTS {automatic}

18 18 18 0 0 0

$ mpirun -np 4 /home/nfs3/smr3191/q-e/bin/pw.x < pb.scf.fit.in > pb.scf.fit.out

The option la2F=.true. in pb.scf.fit.in instructs the code to save data into a lead.a2Fsave

file, subsequently read during the electron-phonon calculation.

1 This example is based on the [PHonon/examples/example03].

19-23 March 2018 S. Poncé Tutorial Tue.5 | 1 of 9



IMake a self-consistent calculation for Pb using a grid of k-points that is suitable for good self-
consistency and phonon calculation. This example uses a 9x9x9 k-point grid.

&control pb.scf.in

calculation='scf'

restart_mode='from_scratch',

prefix='lead',

pseudo_dir = './',

outdir='./'

wf_collect = .true.

/

&system

ibrav= 2,

celldm(1) = 9.2225583816,

nat= 1,

ntyp= 1,

ecutwfc = 30.0

occupations='smearing',

smearing='marzari-vanderbilt',

degauss=0.05

/

&electrons

conv_thr = 1.0d-10

mixing_beta = 0.7

/

ATOMIC_SPECIES

Pb 207.2 pb_s.UPF

ATOMIC_POSITIONS

Pb 0.00 0.00 0.00

K_POINTS {automatic}

9 9 9 0 0 0

$ mpirun -np 4 /home/nfs3/smr3191/q-e/bin/pw.x < pb.scf.in > pb.scf.out

IMake the phonon and electron-phonon calculation for the grid of q-points. This example uses a
3x3x3 grid of q-points. The input variable electron phonon=’interpolated’ tells the ph.x code
to do a linear interpolation of the electron-phonon matrix element using a double grid technique2 and
the variable fildvscf=’pbdv’ tells the code where the derivative of the potential should be stored.

&inputph pb.elph.in

tr2_ph=1.0d-12,

prefix='lead',

fildvscf='pbdv',

amass(1)=207.2,

outdir='./',

fildyn='pb.dyn',

electron_phonon='interpolated',

el_ph_sigma=0.005,

el_ph_nsigma=10,

trans=.true.,

ldisp=.true.

nq1=3, nq2=3, nq3=3

/

$ mpirun -np 4 /home/nfs3/smr3191/q-e/bin/ph.x < pb.elph.in > pb.elph.out

The calculation should take about 2 min to be completed. At this point, you should look at the
output file and familiarized yourself with it. The output contains the results for the electron-phonon
coefficient at each q-point λqν , γqν , and the double-delta integral at several values of the Gaussian
broadening (set by el ph sigma (in Ry) and el ph nsigma ). These are useful for convergence
testing. The results are also written into output files in ”elph dir/a2Fq2r.X.Y”, one per value of the

2 See the paper https://arxiv.org/abs/cond-mat/0504077 for more information.
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Gaussian broadening (X), and per q-points in the IBZ (Y).

IBring the force constant and electron-phonon coefficient to real space using a Fourier transformation
with the q2r.x program.

&input q2r.in

zasr='simple', fildyn='pb.dyn', flfrc='Pb333.fc', la2F=.true.

/

$ /home/nfs3/smr3191/q-e/bin/q2r.x < q2r.in > q2r.out

Note in the output if the Fast Fourier transform (FFT) was successful:

fft-check success (sum of imaginary terms < 10^-12)

The matrix of interatomic force constants in real space should have been created (file Pb333.fc) and
the results for the spectral function α2F , see Eq. (3) below, will be written in elph dir/a2Fmatdyn.*,
one per value of the gaussian broadening

ICalculate γqν on selected lines using the program matdyn.x. For this you need to have the input
variables dos=.false. and la2F=.true..

&input matdyn.in.freq

asr='simple',

amass(1)=207.2,

flfrc='Pb333.fc',

flfrq='Pb333.freq',

la2F=.true.,

dos=.false.

/

21

0.000 0.0 0.0 0.0

0.125 0.0 0.0 0.0

0.250 0.0 0.0 0.0

0.375 0.0 0.0 0.0

0.500 0.0 0.0 0.0

0.750 0.0 0.0 0.0

1.000 0.0 0.0 0.0

0.825 0.125 0.125 0.0

0.750 0.250 0.250 0.0

0.625 0.375 0.375 0.0

0.500 0.500 0.500 0.0

0.325 0.325 0.325 0.0

0.250 0.250 0.250 0.0

0.125 0.125 0.125 0.0

0.000 0.000 0.000 0.0

0.125 0.125 0.000 0.0

0.250 0.250 0.000 0.0

0.325 0.325 0.000 0.0

0.500 0.500 0.000 0.0

0.625 0.625 0.000 0.0

0.750 0.750 0.000 0.0

$ /home/nfs3/smr3191/q-e/bin/matdyn.x < matdyn.in.freq > matdyn.out.freq

This produces files named Pb333.freq.gp with the phonon frequencies along the path, expressed in
cm−1 unit. You should get the following dispersion:
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Note that this is not converged and we should also include spin-orbit coupling (SOC) as Pb is a heavy
atom. At convergence you should get the following (red is with SOC) 3:
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In addition the code should have produced a file named elph.gamma.X with X the different broadening
values. Gamma is the imaginary part of the phonon self-energy. It is the phonon linewidths that can
be written in the double delta approximation as:

γqν = Π
′′
qν = 2πωqν

∑
nm

∫
BZ

dk

ΩBZ
|gmn,ν(k,q)|2δ(εnk − εF)δ(εmk+q − εF), (1)

where εF is the Fermi level. We will see this equation in more details during the first lecture on
Thursday. You can check that you get the following dispersion:

3The figure is from S. Poncé et al., Computer Physics Communications 209, 116 (2016).
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Take a look at how this change with increasing broadening.

ICalculate the electron-phonon coupling strength λqν on selected hight symmetry lines and the
Eliashberg spectral function α2F (ω) using the program matdyn.x. For this you need to have the
input variables dos=.true. and la2F=.true..

&input matdyn.in.dos

asr='simple',

amass(1)=207.2,

flfrc='Pb333.fc',

flfrq='Pb333.freq',

la2F=.true.,

dos=.true.

fldos='phonon.dos',

nk1=10,

nk2=10,

nk3=10,

ndos=50

/

$ /home/nfs3/smr3191/q-e/bin/matdyn.x < matdyn.in.dos > matdyn.out.dos

The electron-phonon coupling strength associated with a specific phonon mode ν and wavevector q
is:

λqν =
1

N(εF)ωqν

∑
nm

∫
BZ

dk

ΩBZ
|gmn,ν(k,q)|2δ(εnk − εF)δ(εmk+q − εF) =

γqν
πN(εF)ω2

qν

, (2)

where N(εF) is the density of states per spin at the Fermi level. From this, the isotropic Eliashberg
spectral function can be obtained via an average over the BZ:

α2F (ω) =
1

2

∑
ν

∫
BZ

dq

ΩBZ
ωqνλqνδ(ω − ωqν). (3)

The spectral function has been produced as files a2F.dosX, with X the different broadening. The
first two numbers are ω and then α2F (ω). Then the three numbers below are the mode resolved
α2F (ω). The total one should give you the following picture for 0.05 meV (blue) and 0.15 meV
(red):

19-23 March 2018 S. Poncé Tutorial Tue.5 | 5 of 9



0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5 5,5 6 6,5 7

·10−4

0

2

4

6

8

ω (Ry)

α
2
F

(ω
)

Take a look at how this change with other broadening.

Again this is unconverged. At convergence you should get something closer to 4:
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ICompute the electron-phonon mass enhancement parameter λ and superconducting critical tem-
perature Tc using the McMillan formula.

lambda.in

10 0.12 1 ! emax (something more than highest phonon mode in THz), degauss, smearing method

4 ! Number of q-points for which EPC is calculated,

0.000000000 0.000000000 0.000000000 1.00 ! the first q-point, use kpoints.x program to calculate

-0.333333333 0.333333333 -0.333333333 8.0 ! q-points and their weight

0.000000000 0.666666667 0.000000000 6.0

0.666666667 -0.000000000 0.666666667 12.0

elph_dir/elph.inp_lambda.1 ! elph output file names,

elph_dir/elph.inp_lambda.2 ! in the same order as the q-points before

elph_dir/elph.inp_lambda.3

elph_dir/elph.inp_lambda.4

0.10 ! \mu the Coloumb coefficient in the modified

! Allen-Dynes formula for T_c (via \omega_log)

$ /home/nfs3/smr3191/q-e/bin/lambda.x < lambda.in > lambda.out

The electron-phonon mass enhancement parameter is the momentum integral λ =
∑

qν λqν and is
given in the file lambda:

4The figure is from S. Poncé et al., Computer Physics Communications 209, 116 (2016).
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Broadening 0.0050 lambda 4.6503 dos(Ef) 7.4402 omega_ln [K] 58.9663

Broadening 0.0100 lambda 2.9129 dos(Ef) 5.1936 omega_ln [K] 54.7458

Broadening 0.0150 lambda 2.3700 dos(Ef) 4.2509 omega_ln [K] 49.0727

Broadening 0.0200 lambda 2.0155 dos(Ef) 3.7926 omega_ln [K] 46.7651

Broadening 0.0250 lambda 1.7924 dos(Ef) 3.5674 omega_ln [K] 46.0507

Broadening 0.0300 lambda 1.6801 dos(Ef) 3.4591 omega_ln [K] 46.0377

Broadening 0.0350 lambda 1.6336 dos(Ef) 3.4121 omega_ln [K] 46.2094

Broadening 0.0400 lambda 1.6184 dos(Ef) 3.3959 omega_ln [K] 46.2935

Broadening 0.0450 lambda 1.6156 dos(Ef) 3.3942 omega_ln [K] 46.2262

Broadening 0.0500 lambda 1.6163 dos(Ef) 3.3990 omega_ln [K] 46.0477

The superconducting critical temperature Tc using the McMillan formula is given by:

Tc =
ωlog

1.2
exp

[
−1.04(1 + λ)

λ(1− 0.62µ∗)− µ∗

]
, (4)

where

ωlog = exp

[
2

λ

∫
dω

ω
α2F (ω) logω

]
. (5)

Note that µ∗ is an empirical parameter that describes the Coulomb screening and has typical values
between 0.1 and 0.16. In this example we choose 0.1 (last input number in lambda.in).
The value of the critical temperature is reported in the output file lambda.out for each broadening.

IYou can redo all the above with more converged parameters. In particular you will need to increase
ecutwfc and the k-point grid.

Note: The critical temperature converges very slowly with the size of the k-point and q-point grids. In addition this is

an isotropic approximation. We will see on Friday how to efficiently converge it and how to compute the anisotropic

Eliashberg properties.

Exercise 2

In this example we are going to calculate the electron-phonon matrix elements of the semiconductor
SiC.
First go in the second exercise:

$ cd tuto_Tues5/exercise2

For this tutorial the ph.x code needs to be modify.

I If you are using your own compiled version of QE, copy the 4 Fortran files to the phonon folder and
re-compile the code:

$ cp do_phonon.f90 elphon.f90 phq_readin.f90 symdyn_munu.f90 PATH/q-e/PHonon/PH

$ cd q-e/; make ph

If you are using the QE version that we provide for the school. Use the alternative path
/home/nfs3/smr3191/q-e/PHonon/PH2/ph.x

The DFT electronic 5 and phononic bandstructure 6 of SiC is given below and shows that SiC has an
indirect Γ−X bandgap.

5The figure is from B. Monserrat and R.J. Needs, Phys. Rev. B 89, 214304 (2014).
6The figure is from K. Karch, et al., Phys. Rev. B 50, 17054 (1994).
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IGo back to the second exercise of the tutorial and run the scf calculation:

&control scf.in

calculation = 'scf'

prefix = 'sic'

restart_mode = 'from_scratch'

wf_collect = .true.

pseudo_dir = './'

outdir = './'

/

&system

ibrav = 2

celldm(1) = 8.237

nat = 2

ntyp = 2

ecutwfc = 30.0

/

&electrons

diagonalization = 'david'

mixing_beta = 0.7

conv_thr = 1.0d-10

/

ATOMIC_SPECIES

Si 28.0855 Si.pz-vbc.UPF

C 12.01078 C.UPF

ATOMIC_POSITIONS alat

Si 0.00 0.00 0.00

C 0.25 0.25 0.25

K_POINTS automatic

8 8 8 0 0 0

$ mpirun -np 4 /home/nfs3/smr3191/q-e/bin/pw.x < scf.in > scf.out

The electron-phonon matrix elements is the electronic response of the state nk due to an atomic
perturbation qν placing the system in a new state mk + q:

gmn,ν(k,q) =
1√

2ωqν
〈ψmk+q(r)|∂qνV scf(r)|ψnk(r)〉. (6)

ICompute the electron-phonon matrix element |gmn,ν(k,q)| at 6 q-points along the Γ−X direction.
Since the code can only handle one q-point at a time we will have to do 5 calculations:

-- ph1.in

&inputph

prefix = 'sic',
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fildvscf = 'dvscf',

fildyn = 'sic.dyn',

tr2_ph = 1.0d-12,

electron_phonon='simple'

/

0.0 0.0 0.0

$ mpirun -np 4 /home/nfs3/smr3191/q-e/PHonon/PH2/ph.x < ph1.in > ph1.out

$ mpirun -np 4 /home/nfs3/smr3191/q-e/PHonon/PH2/ph.x < ph2.in > ph2.out

$ mpirun -np 4 /home/nfs3/smr3191/q-e/PHonon/PH2/ph.x < ph3.in > ph3.out

$ mpirun -np 4 /home/nfs3/smr3191/q-e/PHonon/PH2/ph.x < ph4.in > ph4.out

$ mpirun -np 4 /home/nfs3/smr3191/q-e/PHonon/PH2/ph.x < ph5.in > ph5.out

$ mpirun -np 4 /home/nfs3/smr3191/q-e/PHonon/PH2/ph.x < ph6.in > ph6.out

$ mpirun -np 4 /home/nfs3/smr3191/q-e/PHonon/PH2/ph.x < ph7.in > ph7.out

In the output, locate where the matrix element are written. We can for example look at the evolution
with q of the electron-phonon matrix element for m=n=4 (4th band) and ν = 6 (LO mode) at
k = Γ.
For example, in ph1.out you should find:

ibnd jbnd imode eig_i (eV) eig_j (eV) omega_nu (meV) |g| (meV)

...

4 4 6 9.359503 9.359503 95.957023 117.626599

Γ X
0

1.000

2.000

|g
4
4
,6

(Γ
,q

)|
(m

eV
)

Many physical properties like lifetime, bandgap renormalization, superconducting gap or mobility
require integrating over all phonon wavevectors in the Brillouin zone of the electron-phonon matrix
elements g. Three-dimensional bulk materials like SiC have matrix elements that diverge as 1/q. This
divergence can be integrated but is difficult to converge as this would require hundreds of thousand
of such independent calculations. For this reason, we will continue this exercise tomorrow and use
Wannier interpolation to efficiently perform such integration. We will see that the polar singularity
needs to be treated analytically for accurate results.

ITry to familiarized yourself with the code by looking at other q direction and other bands.
IWhat happens when the bands are not the same n 6= m ?
IYou can also try to fix the q-point and change the k-point along a path.
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